
Polyspace® Code Prover™
Release Notes

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Polyspace® Code Prover™ Release Notes
© COPYRIGHT 2013 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

R2013b

Proven absence of certain run-time errors in C and C++
code . 2

Color-coding of run-time errors directly in code 2
Calculation of range information for variables, function
parameters and return values . 3

Identification of variables exceeding specified range
limits . 3

Quality metrics for tracking conformance to software
quality objectives . 4

Web-based dashboard providing code metrics and quality
status . 4

Guided review-checking process for classifying results and
run-time error status . 4

Graphical display of variable reads and writes 5
Comparison with R2013a Polyspace products 6

iii

iv Contents

R2013b

Version: 9.0

New Features: Yes

Bug Fixes: No

1

R2013b

Proven absence of certain run-time errors in C and
C++ code

Use Polyspace® Code Prover™ to prove the absence of overflow, divide-by-zero,
out-of-bounds array access, and certain other run-time errors in source
code. To verify code, the software uses formal methods-based abstract
interpretation techniques. The code verification is static. It does not require
program execution, code instrumentation, or test cases. Before compilation
and test, you can verify handwritten code, generated code, or a combination of
these two types of code.

Color-coding of run-time errors directly in code

Polyspace Code Prover uses color coding to indicate the status of code
elements.

• Green — Proved to never have a run-time error.

• Red — Proved to always have a run-time error.

• Gray— Proved to be unreachable, which can indicate a functional issue.

• Orange — Unproven, and can have an error.

Errors detected include:

• Overflows, underflows, divide-by-zero, and other arithmetic errors

• Out-of-bounds array access and illegally dereferenced pointers

• Always true/false statement due to dataflow propagation

• Read access operation on uninitialized data

• Dead code

• Access to null this pointer (C++)

• Dynamic errors related to object programming, inheritance, and exception
handling (C++)

• Uninitialized class members (C++)

• Unsound type conversions

2

Calculation of range information for variables, function parameters and return values

For more information, see “Interpret Results”.

Calculation of range information for variables,
function parameters and return values

Polyspace Code Prover calculates and displays range information associated
with, for example, variables, function parameters and return values, and
operators. The displayed range information represents a superset of dynamic
values, which the software computes using static methods.

For more information, see “Interpret Results”.

Identification of variables exceeding specified range
limits

By default, Polyspace Code Prover performs a robustness verification of your
code. The verification proves that the software works under all conditions. As
the verification assumes that all data inputs are set to their full range, almost
any operation on these inputs can produce an overflow.

To prove that your code works in normal conditions, use the Data Range
Specification (DRS) feature to perform contextual verification. You can set
constraints on data ranges, and verify your code within these ranges. The use
of DRS can substantially reduce the number of orange checks in verification
results.

You can use DRS to set constraints on:

• Global variables

• Input parameters for user-defined functions called by the main generator

• Return values for stub functions

3

R2013b

For a global variable, if you specify the globalassert mode, the software
generates a warning when the variable exceeds your specified range.

For more information, see “Data Range Configuration”.

Quality metrics for tracking conformance to software
quality objectives

You can define a quality model with reference to coding rule violations, code
complexity, and run-time errors. By observing these metrics, you can track
your progress toward predefined software quality objectives as your code
evolves from the first iteration to the final version.

By confirming the absence of certain run-time errors and measuring the rate
of improvement in code quality, Polyspace Code Prover enables developers,
testers, and project managers to produce, assess, and deliver code that is
free of run-time errors.

For more information, see “Quality Metrics”.

Web-based dashboard providing code metrics and
quality status

Polyspace Code Prover provides Polyspace Metrics, a Web-based dashboard
for tracking submitted verification jobs, reviewing progress, and viewing the
quality status of your code. Polyspace Metrics provides an integrated view of
project metrics, displaying code complexity, coding rule violations, run-time
errors, and other code metrics.

For more information, see “Quality Metrics”.

Guided review-checking process for classifying
results and run-time error status

In the Results Manager perspective, Polyspace Code Prover provides you with
several options to organize your review process.

4

Graphical display of variable reads and writes

• You can use review methodologies to specify the number and type of checks
displayed on the Results Summary pane. With each methodology, you
review only a subset of checks.

For example, if you are reviewing verification results for the first time,
select First checks to review. The software displays all red and gray
checks but only a subset of orange checks. These orange checks are the
ones most likely to be run-time errors. For more information, see “Review
Checks Using Predefined Methodologies”.

• You can group checks by File/Function or Check:

- Grouping by Check classifies checks by color. Within each color, this
grouping classifies checks by categories related to the origin of the check,
such as Control flow, Data flow, and Numerical.

- Grouping by File/Function classifies checks by the file where they
originated. Within each file, this grouping classifies checks by functions
where they originated.

- For C++ files, you can also group checks by Class. This grouping
classifies checks by the class definition where they originated.

For more information, see “Organize Check Review Using Filters and
Groups”.

• You can filter checks using any of the column information criteria on the
Results Summary pane. For example, you can filter out checks that you
have already justified using the filter icon on the Justified column header.
If you have applied a filter, the column heading changes to indicate that
all results are not displayed. You can also define custom filters. For more
information, see “Organize Check Review Using Filters and Groups”.

• You can navigate through the Results Summary pane using the keyboard
or UI buttons. Both means of navigation respect the grouping, filters, and
methodology used to display results.

Graphical display of variable reads and writes

A Polyspace Code Prover verification generates a data dictionary with
information about global variables and the read and write access operations
on these variables. You can view this information through the Variable
Access pane of the Results Manager perspective.

5

R2013b

For more information, see “Exploring Results Manager Perspective”.

Comparison with R2013a Polyspace products

Polyspace Code Prover is a single product that replaces the following R2013a
products:

• Polyspace Client™ for C/C++

• Polyspace Server™ for C/C++

Polyspace Bug Finder™, which is available with the Polyspace Code Prover,
incorporates the following R2013a products:

• Polyspace Model Link™ SL

• Polyspace Model Link TL

• Polyspace UML Link™ RH

For a summary of differences and similarities in remote verification, results
review and other features and options, expand the following:

Remote verification

Category R2013a R2013b

Products required

Install:
• Polyspace Client for C/C++ on
local computer

• Polyspace Server for C/C++ on
network computers, which are
configured as Queue Manager
and CPUs.

Install:
• MATLAB®, Polyspace Bug
Finder, and Parallel Computing
Toolbox™ on local computer.

• MATLAB, Polyspace Bug
Finder, Polyspace Code Prover,
and MATLAB Distributed
Computing Server™ on head
node of computer cluster. For
information about setting up a
cluster, see “Install Products and
Choose Cluster Configuration”.

6

Comparison with R2013a Polyspace® products

Category R2013a R2013b

On the Polyspace
Preferences > Server
Configuration tab:

• Under Remote configuration,
specify host computer for Queue
Manager and Polyspace Metrics
server and communication port.

• Under Metrics configuration,
specify other settings for
Polyspace Metrics.

On the Polyspace
Preferences > Server
Configuration tab:

• Under MDCS cluster
configuration, specify computer
for cluster head node, which hosts
theMATLAB job scheduler (MJS).
The MJS replaces the R2013a
Polyspace Queue Manager.

• UnderMetrics configuration:

- Specify host computer for
Polyspace Metrics server and
communication port.

- Specify other settings for
Polyspace Metrics.

Configuring and
starting services

In the Remote Launcher Manager
dialog box:

1 Under Common Settings,
specify Polyspace communication
port, user details, and results
folder for remote verifications.

2 Under Queue Manager
Settings, specify Queue Manager
and CPUs.

3 Under Polyspace Server
Settings, specify available
Polyspace products.

In the Metrics and Remote Server
Settings dialog box:

1 Under Polyspace Metrics
Settings, specify user details,
Polyspace communication port,
and results folder for remote
verifications.

2 Under Polyspace MDCS
Cluster Security Settings, you
see the following options with
default values:

• Start the Polyspace MDCE
service — Selected. The mdce

7

R2013b

Category R2013a R2013b

4 To start the Queue Manager and
Polyspace Metrics service, click
Start Daemon.

service, which is required to
manage the MJS, runs on the
MJS host computer and other
nodes of the cluster.

• MDCE service port— 27350.

• Use secure communication
– Not selected. Communication
is not encrypted. You may want
to use secure communication.
For information about
MATLAB Distributed
Computing Server cluster
security, see “Cluster Security”.

3 To start the Polyspace Metrics
and mdce services, click Start
Daemon.

Use the Metrics and Remote Server
Settings dialog box to start and
stop mdce services only if you
configure the MDCS head node
as the Polyspace Metrics server.
Otherwise, clear the Start the
Polyspace MDCE service check
box, and use the MDCS Admin
Center. To open the MDCS Admin
Center, run:

MATLAB_Install/toolbox/distcomp/bin/admincenter

For information about the MDCS
Admin Center, see “Cluster
Processes and Profiles”.

8

Comparison with R2013a Polyspace® products

Category R2013a R2013b

Running a remote
verification

In the Project Manager perspective:

1 On the
Configuration > Machine
Configuration pane, select the
following check boxes:

• Send to Polyspace Server

• Add to results repository
— Allows viewing of results
through Polyspace Metrics.

2 On the toolbar, click Run.

The Polyspace client performs
code compilation and coding rule
checking on the local, host computer.
Then the Polyspace client submits
the verification to the Queue
Manager on your network.

In the Project Manager perspective:

1 On the
Configuration > Distributed
Computing pane, select the
Batch check box. By default,
the software selects the Add
to results repository, which
enables the generation of
Polyspace Metrics.

2 On the toolbar, click Run.

The Polyspace Code Prover software
performs code compilation and
coding rule checking on the local,
host computer. Then the Parallel
Computing Toolbox client submits
the verification job to the MJS of the
MATLAB Distributed Computing
Server cluster.

Managing remote
verifications

Use the Queue Manager to monitor
and manage submitted jobs from
Polyspace clients. On the Web, you
can monitor jobs through Polyspace
Metrics. If you have installed
Polyspace Server for C/C++ on your
local computer, through Polyspace
Metrics, you can open the Queue
Manager .

Use the Queue Manager to monitor
and manage jobs submitted through
Parallel Computing Toolbox clients.

Accessing results
of remote
verifications

When you run a verification on a
Polyspace server, the Polyspace
software automatically downloads
the results to your local, client
computer. You can view the results
in the Results Manager perspective.

On the Web, use Polyspace Metrics
to view verification results. If
Polyspace Bug Finder is installed
on your local computer, you can
download verification results. For
example, in Polyspace Metrics,

9

R2013b

Category R2013a R2013b

In addition, you can use the Queue
Manager to download results of
verifications submitted from other
Polyspace clients.On the Web,
use Polyspace Metrics to view
verification results stored in results
repository. If Polyspace Client
for C/C++ is installed on your
local computer, you can download
verification results. For example,
in Polyspace Metrics, clicking a cell
value in the Run-Time Checks
view opens the corresponding
verification results in the Results
Manager.

clicking a Project cell in the Runs
view opens the corresponding
verification results in the Results
Manager.

Results review

Category R2013a R2013b

Results Explorer Available. Allows navigation
through checks by the file
and function where they
occur. To view, select
Window > Show/Hide
View > Results Explorer.

Removed. To navigate through
checks by file and function,
on Results Summary pane,
from the drop-down menu,
select File/Function.

Filters on the Results
Summary pane

Filters appear as icons on the
Results Summary pane. You
can filter by:

• Run-time error category

• Coding rules violated

• Check color

• Check justification

• Check classification

You can filter by the
information in all the columns
of the Results Summary
pane. In addition to existing
filters, the new filtering
capabilities extend to the file,
function and line number
where the checks appear.
You can also define your own
filters.

10

Comparison with R2013a Polyspace® products

Category R2013a R2013b

• Check status
The filters appear as the
icon on each column header.
To apply a filter using the
information in a column:

1 Place your cursor on the
column header. The filter
icon appears.

2 Click the filter icon and
from the context menu,
clear the All box. Select the
appropriate boxes to see the
corresponding checks.

For more information, see
“Organize Check Review
Using Filters and Groups”.

Code Coverage Metrics In the Results Explorer
view, the software displays
two metrics for the project:

• unp — Number of
unreachable functions
as a ratio of total number of
functions

• cov — Percentage of
elementary operations
covered by verification

The unreachable procedures
are marked gray in the
Results Explorer view.

The new Results Statistics
pane displays the code
coverage metrics through
the Code covered by
verification column graph.

To see a list of unreachable
procedures, click this column
graph.

For more information, see
“Results Statistics”.

11

R2013b

Other features

Product Feature R2013a R2013b

Installation Separate installation
process for Polyspace
products

Polyspace Code Prover
software installed during
MATLAB installation
process.

Project
configuration

On host, for example,
using Polyspace Client
for C/C++ software.

On host, using Polyspace
Code Prover software.

Local verification On host, run Polyspace
Client for C/C++
verification.Review
results in Results
Manager.

On host, run
Polyspace Code Prover
verification.Review
results in Results
Manager.

Export of review
comments to
Excel®, and Excel
report generation

Supported Not supported.

Line command polyspace-c ...

polyspace-cpp ...

polyspace-code-prover-nodesktop
...

Project
configuration file
extension

project_name.cfg project_name.psprj

Results file
extension

results_name.rte results_name.pscp

Configuration > Machine
Configuration
pane

Available Replaced by
Configuration > Distributed
Computing pane.

Configuration > Post
Verification pane

Available Renamed
Configuration > Advanced
Settings

goto blocks Not supported Supported

Polyspace Client and
Server for C/C++

12

Comparison with R2013a Polyspace® products

Product Feature R2013a R2013b

Run verifications
from multiple
Polyspace
environments

Supported Not supported, produces
a license error -4,0.

Non-official
options field

Available in
Configuration > Machine
Configuration pane

Renamed Other
and moved to
Configuration > Advanced
Settings pane

Default includes Includes specific to the
target specified.

Generic includes for C
and C++. These includes
are target independent.

Running a
verification

Code > Polyspace > Polyspace
for Embedded
Coder/Target Link

• Verify Generated
Code

• Verify Generated
Model Reference
Code

Also right-clicking
on a subsystem
and selecting
Polyspace > Polyspace
for Embedded
Coder/Target Link

Code > Polyspace > Verify
Code Generated for

• Selected Subsystem

• Model

• Referenced Model

• Selected Target Link
Subsystem

Also right-clicking on a
subsystem and selecting
Polyspace > Verify
Code Generated
for > Selected
Subsystem /
Selected Target Link
Subsystem

Product Mode Not available. Choose between Code
Prover or Bug Finder
depending on the type of
analysis you want to run.

Polyspace Model Link
SL and TL

13

R2013b

Product Feature R2013a R2013b

Settings Available. Called
Verification Settings
from

Available. Called
Settings from.
Functionality the same.

Open results Option Open Project
Manager and Results
Manager opened the
Polyspace Project
Manager.

Option Open results
automatically after
verification opens
Polyspace Metrics
(batch verifications)
or Polyspace Results
Manager (local
verifications).

Polyspace plug-in for
Visual Studio® 2010

Support for C++11
features

Partial support. Added support for:

• Lambda functions

• Rvalue references
for *this and
initialization of class
objects by rvalues

• Decltype

• Auto keyword for
multi-declarator auto
and trailing return
types

• Static assert

• Nullptr

• Extended friend
declarations

• Local and unnamed
types as template
arguments

14

Comparison with R2013a Polyspace® products

Options

Product Option R2013a R2013b

-code-metrics Available. Not
selected by default.

Removed. Code
complexity metrics
computed by default.

-dialect Available. Default unchanged,
but new value gnu4.6
available for C and
C++.

-max-processes Specify through
Machine
Configuration > Number
of processes for
multiple CPU core
systems or command
line .

Specify from
command line, or
through Advanced
Settings > Other.

-allow-
language-extensions

Available. Selected by
default.

Removed. By default,
software supports
subset of common C
language constructs
and extended
keywords defined
by the C99 standard
or supported by many
compilers.

Polyspace Client and
Server for C/C++

-enum-type-definitionAvailable with
three values.
First value called
defined-by-standard.

Available with three
values.

For C, first value
renamed signed-int.

For C++, first
value renamed
auto-signed-int-first.

15

R2013b

Product Option R2013a R2013b

-scalar-overflows-
behavior
wrap-around

Available. Not
selected by default.

Default.This option
correctly identifies
generated code from
blocks with saturation
enabled.

However, this option
might lead to a loss of
precision. For models
without saturation,
you can choose to
remove this option.

Polyspace Model Link
SL and TL

-ignore-constant-
overflows

Available. Not
selected by default.

Default.

16

	toc
	R2013b
	Proven absence of certain run-time errors in C and C++ code
	Color-coding of run-time errors directly in code
	Calculation of range information for variables, function paramet
	Identification of variables exceeding specified range limits
	Quality metrics for tracking conformance to software quality obj
	Web-based dashboard providing code metrics and quality status
	Guided review-checking process for classifying results and run-t
	Graphical display of variable reads and writes
	Comparison with R2013a Polyspace products
	Remote verification
	Results review
	Other features
	Options

